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1. Introduction 
 

Carbon nanotubes (CNTs) fascinate new materials with 

astonishing mechanical, optical and electrical properties 

(Ren et al. 2011). They are generated by rolling of the 

graphene sheet (Iijima, 1991). Carbon nanotube sheets 

include hexagonal cells that are ideally cut to produce 

carbon atoms of the tube. In fact, CNTs are kinds of rolled 

graphene sheets, and the rolling manner shows the basic 

properties of the tube, and that is actually the main reason 

for the extraordinary feature of the CNTs (Georgantzinos et 

al. 2009). Therefore, in order to effectively use of CNTs in 

each of these fields, it is important that their vibration 

characteristics are examined. Owing to the small sizes of 

the micro beams, they are very appropriate for designing 

small instruments like sensors and actuators (Subramanian 

et al. 2002). 

Hutchison et al. (2001) obtained double walled carbon 

nanotubes (DWCNTs) by arc discharge technique. It was 

revealed that the inner and outer diameters of DWCNTs are 

in the range of 1.1-4.2 nm, 1.9-5 nm, respectively with high 

resolution electron microscopy. Vibration characteristics of 

SWCNTs and DWCNTs were conducted using flexible shell 

model (Yan et al. 2007). Wildöer et al. (1998) and Kwon 

and Tománek (1998) studied the atomic structure of single-  
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walled carbon nanotubes and multi-walled carbon nanotubes. 

It is observed that DWCNTs are used to construct the 

MWCNTs. Li and Chou (2003) used molecular method for 

the vibrational behavior of CNTs and showed that the 

results of SWCNTs were 10% higher than those of 

DWCNTs of the same outer diameter. Ansari et al. (2011) 

engaged Eringen’s nonlocal theory based on Rayleigh-Ritz 

technique to obtain the frequencies of the DWCNT 

association with different values of ratios and parameters. 

The results were presented for different zigzag and armchair 

DWCNTs. Ansari and Arash (2013) used nonlocal model to 

investigate the vibrations of DWCNTs and the displacement 

equations are calculated with van der Waals forces. The 

governing equation for a CNT to study its natural 

frequencies is given from differential quadrature method 

(DQM). The mechanical behavior of DWCNTs, with 

geometrical parameters layer wise boundary conditions and 

small scale factors is fully investigated. Some new resonant 

frequencies are introduced to validate the TBM. Yoon et al. 

(2005) utilized frequencies fall in tera-hertz rang using 

Timoshenko beam model and also used the EBM to find the 

aspect ratio of DWCNTs. In particular, they compared the 

significant effect of the Euler and Timoshenko beam models 

on small diameter and large diameter DWCNTs. They 

suggested for the vibration of short CNTS, the TBM for 

tera-hertz is relevant rather than EBM. Rysaeva et al. 

(2020) focused on close packed carbon nanotube bundles 

materials with highly deformable elements, for which 

unusual deformation mechanisms. Structural evolution of 

the zigzag carbon nanotube bundle subjected to biaxial 

lateral compression with the subsequent shear straining is  
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Abstract.  This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on 

Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of 

vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are 

investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for 

various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is 

performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a 

benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement 

is found. 
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Fig. 1 Schema of double walled carbon nanotubes 
 

 

studied under plane strain conditions using the chain model 

with a reduced number of degrees of freedom. 

In the present study, a Timoshenko-beam theory is used 

to investigate the natural frequencies against half axial wave 

mode with varying four different lengths. DWCNTs are 

assumed as clamped-clamped and clamped free at both 

edges. Since some researchers have utilized Timoshenko 

beam theory, however, do not present satisfactory results 

about varying half axial wave mode with four different 

lengths. So these two effects become a significant for 

vibration frequencies of DWCNTs.  
 

 

2. Timoshenko-beam theory 
 

Fig. 1 shows the schema of double walled carbon 

nanotubes based on Timoshenko beam model. According to 

Yoon et al. (2002), the single beam model consists of 

concentric tubes of multi-walled carbon nanotubes remain 

coaxial during vibration and the multi beam model having 

interlayer radial displacements of nested tube within the 

multi-walled carbon nanotubes. Thus each outer and inner 

tubes of DWCNTs is treated as Timoshenko beam model. In 

double walled carbon nanotubes, there are two tubes having 

diameters 𝑑1 and 𝑑2, respectively and L be the length of 

the tube. The transverse deflection 𝑤(𝑥, 𝑡) and the slope 

𝜙(𝑥, 𝑡) of a Timoshenko-beam due to bending deformation 

alone are related by the following two coupled equations 

(Timoshenko 1974): 

−𝐺𝐴𝑘 (
𝜕𝜙(𝑥, 𝑡)

𝜕𝑥
−

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2 ) + 𝜎𝑥

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2  

= 𝜌𝐴
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
 

(1) 

𝐸𝐼
𝜕2𝜙(𝑥, 𝑡)

𝜕𝑥2 − 𝐺𝐴𝑘 (𝜙 −
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
) = 𝜌𝐼

𝜕2𝜙(𝑥, 𝑡)

𝜕𝑡2  (2) 

Here x represents the space and t denotes the time 

variable and 𝜙(𝑥, 𝑡)  is the slope of Timoshenko-beam. 

Where I stand for moment of inertia, 𝐴 is called area of 

cross section of CNT  and 𝜌 used for mass density of 

CNTs.  𝜎𝑥  and 𝐺  represents the distributed pressure and 

shear modulus. The shear correction coefficient is denoted 

by k and its value differs for different cross sections such as: 

thin walled cross section (0.6 ~ 0.7) and for solid circular 

cross sections (0.9) (Timoshenko, 1974). 

The governing equation of DWCNTs vibration which is 

gained from Eqs. 1, 2. 

−𝐺𝐴1𝑘 (
𝜕𝜙1(𝑥, 𝑡)

𝜕𝑥
−

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑥2
) + 𝜎𝑥

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑥2
 

+𝑝1 = 𝜌𝐴1

𝜕2𝑤1(𝑥, 𝑡)

𝜕𝑡2
 

(3) 

𝐸𝐼1

𝜕2𝜙1(𝑥, 𝑡)

𝜕𝑥2
− 𝐺𝐴1𝑘 (𝜙1 −

𝜕𝑤1(𝑥, 𝑡)

𝜕𝑥
) = 

𝜌𝐼1

𝜕2𝜙1(𝑥, 𝑡)

𝜕𝑡2
 

(4) 

−𝐺𝐴2𝑘 (
𝜕𝜙2(𝑥, 𝑡)

𝜕𝑥
−

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑥2
) + 𝜎𝑥

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑥2
 

+𝑝2 = 𝜌𝐴2

𝜕2𝑤2(𝑥, 𝑡)

𝜕𝑡2
 

(5) 

𝐸𝐼2

𝜕2𝜙2(𝑥, 𝑡)

𝜕𝑥2
− 𝐺𝐴2𝑘 (𝜙2 −

𝜕𝑤2(𝑥, 𝑡)

𝜕𝑥
) 

= 𝜌𝐼2

𝜕2𝜙2(𝑥, 𝑡)

𝜕𝑡2
 

(6) 

The pressure on the outer and inner tubes per unit axial 

length is due to Vander Waals (vdW) forces. The proposed 

vdW model accounts the deflection of interlayer 

interactions between the tubes of double-walled CNT. The 

transverse force applied on the carbon nanotubes is denoted 

by p. The subscript 1 and 2 are for the designation of outer 

and inner tubes. The outer and inner layers of DWCNTs are 

nested with each other and with the help of interlayer 

spacing; the van der Waals interaction is gained. When 

these outer and inner tubes deformed coaxially, the 

interacting pressure with net van der Waals interaction 

remain zero. 

The pressure at any point between the nested tubes is a 

linear function and can be written as the difference of the 

deflection at prescribed point. 

𝑝1 = 𝑐(𝑤2 − 𝑤1) (7) 

𝑝2 = −𝑐(𝑤2 − 𝑤1) (8) 

The term c is the vdW coefficient, depicting the pressure 

increment contributing from outer and inner tubes and can 

be estimated 𝑒𝑟𝑔/𝑐𝑚2 (Yoon et al. 2003). 

𝑐 =
400𝑅1

0.16𝐷2
 (9) 

where 𝑅1  is the inner radius of DWCNTs and 𝐷 =
0.142 𝑛𝑚.  

Substitution of Eq. (7) and (8) into Eqs. (3) and (4) leads 

to 4 coupled equations for 4 unknowns wj (x, t) and ϕj (x, t) 

(j = 1, 2) which is in the form of wave displacement w 

𝑤 = {𝑏1𝑒𝑘𝑥 + 𝑏2𝑒−𝑘𝑥 + 𝑏3𝑒𝑖𝑘𝑥 + 𝑏4𝑒−𝑖𝑘𝑥}𝑒𝑖𝜔𝑡  (10) 

where  𝑏1  , 𝑏2  , 𝑏3  and 𝑏4  are the constants of 

integrations and are determined applying the geometric 

boundary conditions on both ends of the beam. 
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Table 1 Comparison of frequencies with Ref. (Kumar 2018) 

Frequencies 

(THZ) 

Method 
L/d 

12 16 20 

DTM 0.32527 0.18298 0.11716 

Present 0.24321 0.13216 0.10928 

 
Table 2 Comparisons of simply supported frequencies with 

Elishakoff and Pentaras (2009) 

L/d Petrov (Elishakoff and Pentaras 2009) Present 

10 0.46884 0.35561 

16 0.18319 0.15421 

20 0.11725 0.01245 

 

 
Fig. 2 Half axial wave mode against natural frequencies 

with length L = 10nm of C-C DWCNT (𝑅1= 3.5nm, 𝑅2= 

5.25nm.,  𝐺 = 0.4,  𝐸 = 1.0, 𝜌 = 2.0 g/c𝑚3, 𝜎𝑥= 0) 

 
 
2.1 Types of boundary conditions 
 
The continuum approach leads to the fact that the 

frequency equations for given boundary conditions. 

Subjecting to different constraints on the displacement 

function 𝑤(𝑥), following geometric boundary conditions 

are specified.  

i. Simply supported boundary conditions:   

𝑤(𝑥) =
𝜕2𝑤

𝜕𝑥2 = 0 at 𝑥 = 0 or 𝑥 = 𝐿. 

ii. Clamped boundary conditions:    

𝑤(𝑥) =
𝜕𝑤

𝜕𝑥
= 0 at 𝑥 = 0 or 𝑥 = 𝐿. 

 
 

3. Results and discussion 
 

Here, vibrations of double walled carbon nanotubes 

based on Timoshenko-beam theory is investigated with 

clamped-clamped (C-C) and clamped-free (C-F) conditions. 

It is supposed that these two tubes have same Young’s 

modulus (TPa), mass density (2.3/𝑐𝑚3), Poisson ratio 

(0.25), shear coefficient (0.8), shear modulus (0.4 TPa) and 

with effective thickness (0.35 nm) (Wang and Varadan, 

2005). The proposed model based on Timoshenko-beam  

 
Fig. 3 Half axial wave mode against natural frequencies 

with length L = 15nm of C-C DWCNT (𝑅1= 3.5nm, 𝑅2= 

5.25nm.,  𝐺 = 0.4,  𝐸 = 1.0, 𝜌 = 2.0 g/c𝑚3, 𝜎𝑥= 0) 

 

 
Fig. 4 Half axial wave mode against natural frequencies 

with length L = 20nm of C-C DWCNT (𝑅1= 3.5nm, 𝑅2= 

5.25nm.,  𝐺 = 0.4,  𝐸 = 1.0, 𝜌 = 2.0 g/c𝑚3, 𝜎𝑥= 0) 

 

 

model can incorporate in order to accurately predict the 

acquired results the axial mode m = 1, 2, 3, 4, 5 with lengths 

L = 10nm, 15nm, 20nm, 25 nm of material data point, 𝐸 = 

1.0, 𝜌 = 2.0 g/c𝑚3. Table 1 and 2 shows the frequency 

comparison of carbon nanotubes (CNTs) to account the 

validity of present computed results. In Table 1, the 

frequencies are compared with Kumar (2018) and these 

results were obtained by using DTM. As the aspect ratio 

(L/d = 12, 16, 20) increases, the frequencies (THz) of tube 

decreases. The present results are little bit from the 

computations of Kumar (2018). Another comparison is done 

with the results of Elishakoff and Pentaras (2009) as shown 

in Table 2. The frequencies for different aspect ratios are 

consistent for simply supported boundary condition. The 

convergence and validity of model based on Timoshenko-

beam theory is attained with these studies and also verifies 

that the Timoshenko-beam model can accurately describe 

the frequency of CNTs with different parameters. 
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Fig. 5 Half axial wave mode against natural frequencies 

with length L = 25nm of C-C DWCNT (𝑅1= 3.5nm , 𝑅2= 

5.25nm.,  𝐺 = 0.4,  𝐸 = 1.0, 𝜌 = 2.0 g/c𝑚3, 𝜎𝑥= 0) 

 

 

Fig. 2 shows the natural frequencies of double-walled 

CNTs versus half axial wave mode considering the inner 

and outer radii 𝑅1= 3.5nm, 𝑅2= 5.25nm. The parameters 

are fixed as 𝐺 = 0.4,  𝐸 = 1.0, 𝜌 = 2.0 g/c𝑚3, 𝜎𝑥= 0. 

The length of tube is fixed in this graph as L = 10nm with 

two boundary conditions clamped-clamped (C-C) and 

clamped-free (C-F). The effect of frequency is seen for 

varying the half axial wave mode m (1~5). The frequencies 

at m =1 are f ~ 0.6319GHz (C-C), f ~ 0.5266 GHz (C-F) and 

m = 3 are f ~ 1.4744 GHz (C-C) , f ~ 1.3691 GHz (C-F) for 

fixed L = 10nm. The frequency curve of C-C (L = 10nm) is 

higher than that of C-F (L = 10nm). The frequencies 

increase on increasing the half axial wave mode. The 

display of graph directs that the curves are parallel for both 

boundary condition and having a minute gape between the 

curves. Fig. 3 plotted for the frequency effect versus half 

axial wave mode m with fixed length 15nm for two 

different boundary conditions. The frequencies at m =1 are f 

(C-C, C-F) ~ (0.4213, 0.2573 GHz), at m = 2 are (C-C, C-F) 

~ (0.8425, 0.7144 GHz), at m = 3 are (C-C, C-F) ~ (1.2638, 

1.1586 GHz), at m = 4 are (C-C, C-F) ~ (1.6851, 1.6058 

GHz) m = 5 are (C-C, C-F) ~ (2.2063, 2.1061) for fixed L = 

15nm. The frequency decreases on decreasing the half axial 

wave mode. The pattern of frequency curves is different as 

compared from Fig. 2. In Fig. 2 the frequencies are parallel 

for all half axial wave modes and have small gap in two 

boundary conditions but here the frequencies are parallel. 

The frequency gape is larger for initial value m = 1 and 

decreases till m = 4 and after m = 4 the frequencies 

increases abruptly and gape of frequency curve between 

two boundary condition is in growing form. Fig. 4 exhibit 

the frequency curves of C-C (L = 20 nm) and C-F (L = 20 

nm) versus axial wave mode. The frequencies are presented 

in GHz. The other parameters are same as in Fig. 2. The 

frequencies varies as f(m = 1: C-C, C-F) ~ (0.2106, 0.1106 

GHz), f(m = 1: C-C, C-F) ~ (0.2106, 0.1106 GHz),  f(m = 

2: C-C, C-F) ~ (0.6319, 0.5319 GHz), f(m = 3: C-C, C-F) ~ 

(0.9032, 0.8032 GHz),  f(m = 4: C-C, C-F) ~ (1.2644, 

1.1644 GHz),  f(m = 5: C-C, C-F) ~ (1.4957, 1.3957 GHz). 

It is seen that the frequency curves are not uniform smooth 

increase (see Fig. 2) and is not same as Fig. 3. Here the 

frequency curves are increasing and decreasing behaviors 

such as fist increases and then decreases, again increases 

and increases. It means increasing the length of DWCNTs, 

frequency behavior totally changed. It is seen that model 

has produced lowest results for C-F and highest for C-C. 

Fig. 5 present the frequency sketch of frequencies (GHz) 

versus half axial wave mode with L = 25nm. The C-C 

frequencies for m = 1, 2, 3, 4, 5 are 0.0643, 0.3502, 0.9943, 

1.2148, 1.3564 and C-F frequencies for 0.0286, 0.2873, 

0.8744, 1.1086, 1.3058. The frequency pattern is not same 

as like Figs. 1~3. The complex behavior is observed. The 

frequency gape is insignificant for m =1 and a bit increase is 

seen for m = 2, the gap increase for m = 3, 4 and for m = 5, 

the gap distance same as initial value. It is indicated that the 

frequencies decreases on increasing the length from L = 10 

~ 25nm.  

 

 

4. Conclusions 

 

The discussion in this chapter based on Timoshenko 

beam theory describes the vibration analysis of double 

walled carbon nanotubes. This vibration behavior is 

incorporated with clamped-clamped and clamped free 

boundary condition. The frequencies are estimated with 

varying half axial wave mode. The frequencies decrease on 

decreasing the half axial wave mode. At higher values of 

half axial wave mode, frequencies arcs disturbed. As the 

length of tube increases with half wave length, the resulting 

frequencies decreases. The gap between the two distinct 

boundary conditions is clearly detected especially. The 

clamped clamped frequencies are higher than other 

boundary condition. It means that frequencies have a vital 

role in varying different length of tube. The current model 

can be extended to other nonlocal model. 
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